Bibliometric Analysis of Deep Learning Applications in Diabetes

نویسندگان

چکیده

This study provides a bibliometric review of deep learning applications in diabetes between 2018 and 2022, with an analysis the 2201 publications. highlights influential aspects research from perspective. Deep has drawn significant interest researchers, particularly those working diabetes. Two well-known databases: Web Science Scopus, each which having its own data format, are combined into single format using R programming language Studio, duplicates removed. The Bibliometrix package is used to conduct quantitative analysis, includes highlighting primary journals, works that have been referenced most, authors, nations, institutions produced as well keyword clustering, paper split sub-periods track theme progression, top trend analysis. findings demonstrate notable increase publications since 2018. A plethora studies conducted on practical treat diabetes, dramatically rising. IEEE Access, Scientific Reports, Computers Biology Medicine three most relevant journals. China productive highly cited, while USA comes second. Accuracy, atrial fibrillation, heart infarction recently hot topics. frequently words human, article, mellitus. help academics better understand area this related field, one hottest fields Artificial Intelligence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

Applications | Uncertainty in Deep Learning

In previous chapters we linked stochastic regularisation techniques (SRTs) to approximate inference in Bayesian neural networks (NNs), and studied the resulting model uncertainty for popular SRTs such as dropout. We have yet to give any real-world applications stemming from this link though, leaving it somewhat in the realms of “theoretical work”. But a theory is worth very little if we can’t u...

متن کامل

Image Analysis and Deep Learning for Applications in Microscopy

Ishaq, O. 2016. Image Analysis and Deep Learning for Applications in Microscopy. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1371. 76 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9567-1. Quantitative microscopy deals with the extraction of quantitative measurements from samples observed under a microscope. Recent developmen...

متن کامل

Applications of Deep Learning to Sentiment Analysis of Movie Reviews

Sentiment analysis is one of the main challenges in natural language processing. Recently, deep learning applications have shown impressive results across different NLP tasks. In this work, I explore performance of different deep learning architectures for semantic analysis of movie reviews, using Stanford Sentiment Treebank as the main dataset. Recurrent, Recursive, and Convolutional neural ne...

متن کامل

the stady and analysis of rice agroclimatology in lenjan

the west of esfahan province, iran, is one of the most important agricultural areas throughout the country due to the climate variability and life-giving water of zayanderood river. rice is one of the major and economic crops in this area. the most important climatic elements in agricultural activities which should be considered include temperature, relative humidity, precipitation and wind. so...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Trends in Computer Science and Smart Technology

سال: 2023

ISSN: ['2582-4104']

DOI: https://doi.org/10.36548/jtcsst.2022.4.006